Silent Synapses during Development of Thalamocortical Inputs

نویسندگان

  • John T.R. Isaac
  • Michael C. Crair
  • Roger A. Nicoll
  • Robert C. Malenka
چکیده

During development, activity-dependent mechanisms are thought to contribute to the refinement of topographical projections from the thalamus to the cortex. Because activity-dependent increases in synaptic strength may contribute to the stabilization of synaptic connections, we have explored the mechanisms of long-term potentiation (LTP) at thalamocortical synapses in rat somatosensory (barrel) cortex. During early postnatal development (postnatal days 2-5), we find that a significant proportion of thalamocortical synapses are functionally silent and that these are converted to functional synapses during LTP. Silent synapses disappear by postnatal day 8-9, the exact time at which the susceptibility of these synapses to LTP is lost. These findings suggest that the activity-dependent conversion of silent to functional synapses due to correlated pre- and postsynaptic activity may contribute to the early development and refinement of thalamocortical inputs to cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex.

Subplate neurons (SPNs) form one of the earliest maturing circuits in the cerebral cortex and are crucial to cortical development. In addition to thalamic inputs, subsets of SPNs receive excitatory AMPAR-mediated inputs from the developing cortical plate in the second postnatal week. Functionally silent (non-AMPAR-mediated) excitatory synapses exist in several systems during development, and th...

متن کامل

Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses.

The thalamus serves as a gate that regulates the flow of sensory inputs to the neocortex, and this gate is controlled by neuromodulators from the brainstem reticular formation that are released during arousal. Here we show in rats that sensory-evoked responses were suppressed in the neocortex by activating the brainstem reticular formation and during natural arousal. Sensory suppression occurre...

متن کامل

Long-Term Depression at Thalamocortical Synapses in Developing Rat Somatosensory Cortex

Sensory experience during an early critical period guides the development of thalamocortical circuits in many cortical areas. This process has been hypothesized to involve long-term potentiation (LTP) and long-term depression (LTD) at thalamocortical synapses. Here, we show that thalamocortical synapses in rat barrel cortex can express LTD, and that LTD is most readily induced during a developm...

متن کامل

Silent synapses persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-reared mice.

Immature excitatory synapses often have NMDA receptors but not AMPA receptors in central neurons, including visual cortical pyramidal neurons. These synapses, called silent synapses, are converted to functional synapses with AMPA receptors by NMDA receptor activation during early development. It is likely that this process underlies the activity-dependent refinement of neuronal circuits and bra...

متن کامل

Synchronized paroxysmal activity in the developing thalamocortical network mediated by corticothalamic projections and "silent" synapses.

In mouse thalamocortical slices in vitro, the potassium channel blocker 4-AP and GABAA receptor antagonist bicuculline together induced spontaneous prolonged depolarizations in layer VI neurons from postnatal day 2 (P2), in ventroposterior nucleus neurons (VP) from P7, and in reticular nucleus neurons (RTN) from P8. Dual whole-cell recordings revealed that prolonged bursts were synchronized in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997